
Technical standards

The technical standards are what pension providers and schemes will use to interface with

the central technical architecture and/or each other. This includes the connectivity
mechanisms; protocols for authorising the sharing of information; the methodology for the

generation of pension identifiers, tokens, globally unique identifiers used in ecosystem
transactions; and the rules for registration of pension identifiers for pensions found.

Further technical documentation to accompany the technical standards will be released at a
later date.

Version 2.0

These standards are approved by the Secretary of State for Work and Pensions and the

Department for Communities (Northern Ireland) and were published on 13 March 2025.

Pension providers and schemes must align with this version of the technical standards.

These standards were approved by the Secretary of State for Work and Pensions on 4 March
2025 and by the Department for Communities (Northern Ireland) on 13 March 2025.

How changes to standards will be managed will be outlined in PDP’s approach to standards
governance.

Changelog

Refer to the changelog for updates since the last publication.

Downloads

Download the APIs and schemas related to the technical standards.

Download technical-standards-apis-and-schemas-v2-0.zip

This zip folder contains:

• view-data v1_2.yaml

• find-requests v1_3.yaml

• introspect v1_1.yaml

• perm v1_1.yaml

• rqp v1_1.json

• rreguri v1_3.yaml

• token v2_1.yaml

Introduction

Background

1. Pensions dashboards are apps, websites or other tools which help individuals view
information about their multiple pensions in one secure place online, at a time of their
choosing. They bring together information on all a user’s (in-scope) pensions, including their
State Pension, as well as any occupational and personal pensions. This supports individuals’
engagement with their pensions and their planning for retirement. 

2. The Money and Pensions Service (MaPS) set up the Pensions Dashboards Programme
(PDP) in 2019 to design and build the central digital architecture (CDA) and services that

make pensions dashboards possible. PDP are also responsible for the supporting governance
framework, service design and operating model for the pensions dashboards ecosystem. 

3. The pensions dashboards ecosystem enables millions of individuals to connect with their
pensions information through multiple dashboards across thousands of pension providers
and schemes. Find out more about the pensions dashboards ecosystem and its
components.    

4. MaPS is responsible for operating its own non-commercial, pensions dashboard as a
public service.

Purpose

5. These technical standards are issued by the Money and Pensions Service (MaPS) under
delegated powers given by the Pensions Dashboards Regulations 2022 and the Pensions
Dashboards (No. 2) Regulations (Northern Ireland) 2023 (referred to hereafter as
‘Regulations’) and the Rules of the Financial Conduct Authority (FCA) (hereafter ‘Rules’).  

6. The technical standards provide the basis for interoperability across the pensions
dashboards ecosystem. They provide a common set of connectivity mechanisms and

interfacing rules for pension providers and schemes, determining how parties are to interact
with and communicate with the central digital architecture and each other. 

7. The technical standards therefore cover:

• connectivity mechanisms

• protocols for authorizing the sharing of information

• the methodology for the generation of pension identifiers, tokens, globally unique identifiers used in

ecosystem transactions 

• the rules for registration of pension identifiers for pensions found

• definitions of APIs to be used by ecosystem participants

• details of how the APIs must be used during the expected functioning of the ecosystem

8. The technical standards facilitate pension providers’ and schemes’ compliance.

Areas for future inclusion

9. There are a number of areas of functionality that will be addressed in later versions of the
technical standards, namely:  

• standards that apply only to pension dashboard providers

• mechanism to enable refresh of PAT tokens to allow pension providers and schemes to manage

resources that they have registered
• PAT refresh notifications issued by the CDA to the pension providers or schemes

• general error response formats and codes

Audience

10. These standards apply legally to the trustees or managers of occupational pension

schemes (pension schemes), the managers of stakeholder and personal pension schemes
(pension providers), connected to, or required to connect to, the pensions dashboards
ecosystem.  This version does not include any standards that apply to dashboard providers.
The standards for dashboard providers will be published separately.

11. Where pension providers and schemes connect to the ecosystem using a third-party
supplier, such as a third-party administrators or software providers, the third parties will
apply the technical standards on behalf of their client pension providers and schemes. We
expect much of the implementation of our standards will be undertaken by these third
parties on behalf of multiple clients. A pension provider or scheme connecting via an
already-connected third party will use the third party’s processes to meet the standards.
However, as the standards apply to the pension provider or scheme, the latter are
responsible for compliance with them, even if implementation is delegated to a third party.
When we refer to pension providers and schemes, this includes any of these third parties.

Jurisdiction

12. These standards apply to all United Kingdom pension providers subject to the dashboard
duties in the FCA Rules, and all United Kingdom pension schemes subject to the dashboard
duties in the DWP Regulations. 

Other guidance

13. These standards should be read in conjunction with the other PDP standards (data
standards, code of connection, reporting standards). 

Use and evidence

14. Standards are mandatory requirements and, therefore, compliance by pension providers
and schemes is compulsory.   

Version

15. This is version 2.0 of the technical standards.

16. Refer to the changelog for updates since the last publication.  

Technical overview 

Client registration 

17. Registration of OAuth clients (pension providers and schemes and pension dashboard
providers) is required for the operation of the user-managed access (UMA) profiles. The
governance register (which includes the UMA authorization server as the software enti ty
managing software client registration) will provide services for client registration. 

18. Static client registration is being used.

Overview of the pensions dashboards ecosystem participants

19. The following diagram shows each participant involved in the protocol interactions
detailed in this document.

Pensions dashboards ecosystem participants 

20. The participants in the ecosystem are:

• pension dashboard providers (MoneyHelper and commercial dashboards)

• central digital architecture (this encompasses the consent and authorization service, the pension

finder service, the identity service and the governance register)
• pension providers, pension schemes, integrated service providers (ISPs), State Pension service

OpenAPI and JSON schema specifications

21. This version of the technical standards includes, and should be read in conjunction with
the OpenAPI specifications contained in the downloads section and, with the json schemas

detailing the find_request_token_payload and view_data_token_payload that are issued as
part of the data standards.

GUID creation protocols

22. All GUIDs used within the ecosystem are 32 hex digits (128 bits) allocated ‘randomly’ by
standard methods and must be profiled using the approach in rfc4122

(https://www.ietf.org/rfc/rfc4122.txt). As per RFC4122, all GUIDs should be generated in
lowercase.

Identifiers

23. This section defines specific identifiers that must be understood by users of the
ecosystem.

find_correlation_id

24. A correlation identifier provided in find-requests. This allows pension providers and
schemes to identify where repeated find-requests are issued in relation to the same citizen
user. Its format is a 256-bit hash value, represented as a 64-digit hexadecimal number.

holdernameGuid

25. holdernameGuids are identifiers provided by the pension provider or scheme. They are
associated with one or more parts of regulated pension providers or schemes.

assetGuid

26. An assetGuid is a globally unique identifier (GUID) allocated by the pension provider or

scheme in relation to a pension asset, on the pension provider or scheme systems, and
find_correlation_id.

Pension identifier (PeI)

27. Within the ecosystem, the PeI is a unique resource location identifier for a pension asset
that has been registered with the CDA. It is composed of two GUIDs separated by a colon,
<holdernameGuid>:<assetGuid>.

28. They are generated by pension providers or schemes (or their ISPs) and must be globally
unique. HoldernameGUIDs are registered by pension providers or schemes during the
connection process. The holdernameGuid is registered against a view_data_host_url which
identifies a base URL and endpoint to be used when attempting to retrieve data using the
view-data API. More than one holdernameGuid can be registered with the same
view_data_host_url.

29. Operational retention period: pension providers and schemes are required by the

legislation to create pension identifiers in accordance with PDP technical standards for a
positive match. The legislation also sets out requirements in respect of de-registration

where a match is made by the member ceases to be a relevant member. A pension
identifier is therefore a long-lived identifier which persists and remains registered with the
consent and authorization service for as long as the pension asset to which it relates belongs
to a 'relevant member' of a pension scheme in scope of the dashboards service as defined in
legislation. The pension provider or scheme that registered the pension identifier has
obligations under the dashboards legislation to de-register the pension identifier where the
member ceases to be a relevant member. Where a possible match is registered but the user
either does not make contact within 30 days to resolve the match, or where the user does
make contact, but the provider or scheme is unable to resolve the possible match. 

30. The persistence of the pension identifier at the consent and authorization service,
however, is subject to the user's account at the consent and authorization service remaining
active. If the user's account is deleted as a result of a period of non-use, or by the active
decision of the user to delete their account, the pension identifiers will then expire.

holdernameViewDataUrl

31. The view_data_host_url is the base URL to be used when accessing view-data. It is
associated with one or more holdernameGuids.

Connection (onboarding) information

32. Participants will work through a number of processes to connect to the PDP ecosystem.

These processes are defined outside of the technical standards, but this section provides a
summary of the technical information which will need to be supplied by participants to PDP,
or by PDP by participants, to enable participants to interface with the PDP ecosystem. This
information is also intended to support the API definitions and sequence diagrams defined
in the later sections of the technical standards.

Provided by PDP

token_host_url

Format: URL.

Description: The host for the token resource endpoint. For example: https://[CDA
URL]/ig/token. Also known as the as_uri.

Scope: One per shared environment.

rreguri_host_url

Format: URL.

Description: The host for the rreguri resource registration endpoint For example:
https://[CDA URL]/ig/rreguri.

Scope: One per shared environment.

introspect_host_url

Format: URL.

Description: The host for the introspect resource endpoint. For example: https://[CDA
URL]/ig/introspect.

Scope: One per shared environment.

perm_host_url

Format: URL.

Description: The host for the permission endpoint. For example: https://[CDA URL]/ig/perm.

Scope: One per shared environment.

authorize_host_url

Format: URL.

Description: The host for the authorization endpoint. For example: https://[CDA
URL]/ig/authorize.

Scope: One per shared environment.

jwks_host_url

Format: URL.

Description: The host for the jwks endpoint. For example: https://[CDA URL]/ig/jwk_uri.

Scope: One per shared environment.

JWT_audience

Format: String.

Description: Authentication server. AS identifier to be supplied/provided in JWTs where the
AS is the audience for the token.

Scope: One per shared environment.

Crypto material: certificate package

Format: Package (zip).

Description: Contains the participant certificate, certificate chain and the private and public
keys to be used to secure the mTLS connection between parties.

Scope: One per shared environment.

Crypto material: signing key package

Format: Package (zip).

Description: Contains the private and public keys and the key identifier (kid), to be used to
sign and verify the signature of JWTs.

Scope: One per shared environment.

Provided by each pension provider or scheme

find_request_path_url

Format: URL.

Description: The path to the service that the pension provider or scheme provides to
implement the find-requests API. For example:
https://api.mypensionservice/dashboards/find.

Scope: One per shared environment.

view_data_host_url

Format: URL.

Description: The host for the view_data resource endpoint. For example:
https://api.mypensionservice/dashboards/view-data1/view-data.

Scope: One per shared environment. A view_data_host_url may be registered against
multiple holdernameGuids.

holdernameGuid

Format: Hex string (GUID).

Description: The holdernameGuid is the identifier for the pension provider or scheme from
which pension details are returned to users at dashboards.

Scope: One per shared environment.

Tokens

Token summary

33. The PDP ecosystem is built on user managed access (UMA 2.0) and thus utilises the
tokens required/permitted by UMA 2.0:

• Requesting party access token: RPT

• Permissions ticket: PMT

• Protection API token: PAT

• Persisted claims token: PCT

The PDP UMA 2.0 profile adds a custom claims token:

• Requesting party: RQP

34. In addition, the PDP technical standards also define the following tokens:

• user token

• user account token

• view data token

35. The information for each token is summarised in the below, with further details
provided in the subsequent sections.

RQP

Issuer: Dashboard.

Signed: Yes.

Encrypted: No.

Time to live: 60 seconds and one time use.

Purpose: Asserts the user at the dashboard.

PMT

Issuer: CDA.

Signed: No.

Encrypted: Yes.

Time to live: 60 seconds and one time use.

Purpose: Used to request an RPT.

RPT

Issuer: CDA.

Signed: No.

Encrypted: Yes.

Time to live: 5 days.

Purpose: Authorizes the dashboard to retrieve PeIs from the CDA and pensions view data
from pension providers or schemes. Each RPT relates to a single UMA resource.

PCT

Issuer: CDA.

Signed: No.

Encrypted: Yes.

Time to live: 90 days.

Purpose: Represents the association of the identity of the requesting party (user) at
dashboard and at the Authorization Server. Used to ‘refresh’ RPTs.

PAT

Issuer: CDA.

Signed: Yes.

Encrypted: No.

Purpose: Authorizes pension providers and schemes to create/update/delete PeIs,
introspect RPTs and obtain PMTs.

user_token

Issuer: CDA.

Signed: Yes.

Encrypted: No.

Time to live: 60 seconds and one time use.

Purpose: Encapsulates the verified and self-asserted “find” data of an individual citizen user.

user_account_token

Issuer: CDA.

Signed: Yes.

Encrypted: Yes.

Time to live: 60 seconds.

Purpose: Authorizes pension providers and schemes to request a PAT.

view_data_token

Issuer: Pension provider or scheme.

Signed: Yes.

Encrypted: No.

Time to live: 60 seconds.

Purpose: Encapsulates the pension “view” data returned by a pension provider or scheme
for a pension asset.

General token principles

• unless stated otherwise, all tokens are JSON Web Tokens (JWT) as per RFC7519

• JWTs contain base64 encoded JSON

• all tokens are signed using RS256
• certain tokens are encrypted as summarised in the table above and detailed in the individual token

sections below

• where the token receiver (dashboard or pension provider or scheme) is only required to “store and

forward” and not process the token contents, then on receipt of the token:
• the token does not need to be decrypted (if applicable)

• the token does not need to be decoded

• the token signature does not need to be validated (if applicable)

• the token schema does not need to be validated

• where the token receiver (dashboard or pension provider or scheme) is required to process the token

contents, then on receipt of the token:
• the token must be decoded

• the token signature must be validated

• the token schema must be validated

• token validity periods (IAT, EXP and NBF where present) must be respected

Where applicable, this behaviour is specified and detailed in the individual token sections
below.

JSON web token (JWT) signing and verification

36. As part of the process to onboard to the CDA the participant will receive a crypto

package. This will contain the signing key material. Included is the private key which must be
used to generate the signature. This uses RS256 as the signing algorithm to sign a JWT.

37. To verify the signature of a JWT the CDA will expose a centralised JWKS endpoint. The
participant must be able to call this endpoint to retrieve a jwk for the kid provided in the
JWT header. This can be converted to a pem which can then be used to verify the signature.

38. Participants must ensure they pass their assigned “kid” parameter. This will be part of
the JWT header when returning pension details back to a dashboard. The “kid” will be
generated as part of connection and its format will be a GUID. Participants will receive this
as part of the crypto package.

Example of JWT header containing “kid” parameter

{

"alg": "RS256",

"typ": "JWT",

"kid": "ec1abf89-225b-49c2-ab87-1d425ac70f8d"

}

Requesting party (RQP)

• PDP UMA profile name: pension_dashboard_rqp

Purpose

39. The RQP (Requesting Party) represents the pensions dashboard’s assertion at the time
of authorization. It confirms of the identity of the user, the dashboard instance and the
user’s role. The PDP CDA uses the RQP to link the user@dashboard to the CDA user record.

Description

40. For the schema see “rqp v1_1.json”. The RQP token is a JWT defined as per the
referenced schema, containing the following claims.

• REQUIRED iss: Unique identifier within dashboard ecosystem of the dashboard instance issuing the

JWT. Provided to the dashboard provider during connection (onboarding).
• REQUIRED sub: Unique identifier within scope of iss, of the requesting party (user) which is

authenticated to iss at the time the JWT is issued. Format [uniqueUserId]@[iss].

• REQUIRED aud: Unique identifier within the scope of the dashboard ecosystem of the Authorization

Server. Provided to the dashboard provider during connection (onboarding).
• REQUIRED iat: Time of issue.

• REQUIRED exp: Time of expiry.

• REQUIRED jti: Unique token identifier.

• REQUIRED role: States the role in which the requesting party is acting. String value. Must be set to

“owner”.

Usage

41. The client (dashboard) must issue an RQP aligning with the supplied schema. This must
contain claims to identify the user, the dashboard instance, and the role the user is playing
in using the dashboard. It must be presented with every authorization request. It must also
assert that the user acting in a role is controlling the dashboard instance. The RQP token
does not need to be bound to the client (Authorization Server).

• for each authorization attempt the issuer is required to mint a new RQP token

• the token must be signed by the issuer (dashboard) using the private key supplied by PDP as part of

Connection (onboarding)

Permissions ticket (PMT)

• PDP UMA profile name: pension_dashboard_pmt

Purpose

42. The permissions ticket (PMT) is a correlation handle representing requested

permissions. The Authorization Server creates and maintains the PMT. It enables the client
to request an RPT.

Description

43. The PMT token is a JWT as defined in the PDP UMA profile. However, as these tokens
are issued and consumed by the Authorization Server, they should be treated as opaque by
other parties. These other parties would include dashboard clients and pension providers or
schemes. Consequently, no schema is provided.

Usage

44. The PMT is generated by the PDP CDA (Authorization Server). It can be passed to
different destinations based on how it was generated. It is either passed to the dashboard

client directly by the CDA, or to the dashboard by the pension provider or scheme (Resource
Server).

45. The PMT must be presented by the dashboard client, at the token endpoint and during
requesting party redirects. Permission tickets have very short lifetimes. They are single use
and they are protected from replay.

• the token will be encrypted by the issuer (Authorization Server)

• the client receiver (dashboard) does not need to decrypt the token

• PMTs are single use; the Authorization Server will issue a new token with a new JTI for every iteration

of the permission process

• the client (dashboard) must discard any existing RPT for the resources owned by the pension owner

(to which the permission ticket relates), whether a new RPT is issued or not

Requesting party access token (RPT)

• PDP UMA profile name: pension_dashboard_rpt

Purpose

46. The requesting party access token (RPT) contains the details of an authorization request.

It will detail the specific requesting party (pension owner), and also the specific dashboard
client. This will allow access to specific resources at a Resource Server (pension provider or
scheme) with stated scope.

Description

47. The RPT token is a JWT as defined in the PDP UMA profile. However, as these tokens are
issued and consumed by the Authorization Server, they should be treated as opaque by

other parties. These other parties would include dashboard clients and pension provider or
schemes. Consequently no schema is provided.

Usage

48. The RPT is generated by the PDP CDA (Authorization Server). It is returned to the
dashboard as a result of the successful processing of a PMT.

49. RPT is used by the dashboard as the authorization token for requests to access UMA
protected resources. The UMA protected resources could be PeIs hosted by the CDA
provided via the “Retrieve PeI” flow. They could also be pensions asset information hosted

by pension providers or schemes, provided via the “Get View Data Request” flow. Separate
RPTs are required for retrieving PeIs and for each accessed pensions asset.

50. After receiving a request containing an RPT, pension providers and schemes must

introspect the RPT against the CDA Introspect API. The pension provider or scheme uses the
PAT to authorize the introspect API interaction.

• The token will be encrypted by the issuer (Authorization Server).

• The client receiver (dashboard, pension provider or scheme) does not need to decrypt the

token.
• The token may be persisted by the dashboard in accordance with policy (if the client is capable of

suitably protecting the token). The token should be deleted by the dashboard if or when the

dashboard makes an unsuccessful attempt to access a resource using it (indicating the token has
exceeded its lifetime or has been revoked).

• The dashboard client should provide its existing RPT for the resource it requested in the previous call

to the same resource server for the same requesting party, if it has one.

• The RPT is bound via OMTLS to the dashboard client by the Authorization Server when it is issued.

• The Authorization Server may revoke a token for its own reasons at any time (including resource

owner revocation of policy).
• The token should be presented to the resource server (pension provider or scheme) by the

dashboard, the token must be introspected by the resource server at the Authorization Server
introspection endpoint, the results of introspection must not be cached at the resource server .

• Introspection of the RPT is used to:

• validate the OAuth MTLS Token Binding fingerprint (of the client, by the Authorization

Server)
• support revocation of the RPT at any time

• Resource servers are responsible for access to the resource. The introspection response needs to be

compared with what is stored internally for the resource to ensure access request is authorized.

Persisted claims token (PCT)

• PDP UMA profile name: pension_dashboard_pct

Purpose

51. The persisted claims token (PCT) represents the association of the identity of the
requesting party (user). The PCT is represented at the dashboard and at the Authorization
Server, where it retains the assured user state. This allows the PCT to serve as an ‘enhanced’
refresh token over longer timeframes.

52. The use of the PCT removes the need for the user to step up their authentication level
for every authorization request. It does this by creating a persistent association between the

user and role at the dashboard instance with their identity at the Authorization Server
assured to (a higher) standard.

Description

53. The PCT is a JWT as defined in the PDP UMA profile. However, these tokens are issued
and consumed by the Authorization Server. Therefore, they should be treated as opaque by
other parties such as the dashboard clients. Consequently, no schema is provided.

Usage

54. The PCT is issued from, and presented at, the Authorization Server token end point. This
is part of an authorization request and/or response by the dashboard.

55. The PCT supports the user experience of being able to silently re-authorize across all the
user's resource servers. This would be based on their assured identity for a defined period
(the PCT Time to live).

• the token will be encrypted by the issuer (Authorization Server)

• the client receiver (dashboard) does not need to decrypt the token

• the PCT is bound via OMTLS to the dashboard client by the Authorization Server when it is issued

56. The token may be persisted by the dashboard to support future authorization requests.
This would apply in the case of the same requesting party in the same role. The client must
be capable of suitably protecting the token.

57. The dashboard must delete the PCT when it is presented with a new PCT by the
Authorization Server, for the same user, in the same role. Or should delete the PCT if or
when the dashboard makes an unsuccessful attempt to access a resource using it. This
would indicate the token has exceeded its lifetime or has been revoked.

58. The token must be presented to the token endpoint at the Authorization Server by the
dashboard client.

Protection API token (PAT)

• PDP UMA profile name: pension_dashboard_pat

Purpose

59. The protection API token (PAT) allows Resource Servers to register UMA protected

resources. This would be on behalf of the resource owner, a pensions owner. Note in this
case Resource Servers are pension providers or schemes. UMA protected resources are
pension assets.

60. The PAT is also used to authorize Resource Servers. This allows them to introspect RPTs
received with pensions data view requests.

61. It can also be used to retrieve PMTs from the CDA. This would be useful where the RPT
in the pensions data view request is missing or expired.

Description

62. The PAT is a JWT as defined in the PDP UMA profile. However, these tokens are issued
and consumed by the Authorization Server. Thus, they should be treated as opaque by other
parties such as the pensions providers or schemes. Consequently, no schema is provided.

Usage

63. Pension owners grant permission for the Authorization Server to determine their access
policy. This controls access to pension owner's protected resources. This would be at one or
more Resource Servers holding pension assets managed by pension providers. Pension
owners are able to do this in their role as resource owners.

64. The PAT is an OAuth token of scope uma_protection.

65. PATs must be persisted by the Resource Server to which they were issued. They must be
associated with the resource owner’s record(s) at that location.

• the token will be signed by the issuer (Authorization Server)

• the client receiver (pension provider or scheme) does not need to validate the signature

• the PAT is bound to the Resource Server client when it is issued

• the Authorization Server may revoke a PAT for its own reasons at any time (including resource owner

revocation of policy)

66. The token may be deleted by the Resource Server if it is revoked or when the Resource
Server makes an unsuccessful attempt to access an Authorization Server API using it.

User token

Purpose

67. The user token encapsulates the verified and self-asserted personal data for an
individual user performing a request to find their pensions.

Description

68. For the schema see find_request_token_payload json (issued as part of the data
standards).

69. The user token is a JWT as defined in the referenced schema, issued by the PDP CDA.

Pension providers and schemes are required to parse and process the user token contents.
This would be as part of processing the find request.

Usage

70. A user token is included with every find request sent by the PDP CDA to pension
providers or schemes:

• the token will be signed by the issuer (PDP CDA)

• the client (pension provider or scheme) must validate the signature of the token

• the client must validate the token contents against the published version of the token schema

• The token is issued for the sole purpose of triggering the find process and its contents must not be

persisted by the pension provider or scheme if: (a) the pension provider/scheme determines that the
token does not relate to any relevant member of the scheme, (b) if a possible match is registered but
the dashboard user does not make contact within 30 days, or (c) a possible match is registered and

the user makes contact but the pension provider/scheme is not able to resolve the possible match
within such time as may be reasonably allowed by the provider/scheme

User account token

Purpose

71. The user account token enables a Resource Server (pension provider or scheme) to
obtain a PAT on behalf of the resource owner. It is a temporary credential.

Description

72. The user account token is a JWT. These tokens are issued and consumed by the
Authorization Server. Thus they should be treated as opaque by other parties such as the
dashboard clients. Consequently, no schema is provided.

Usage

73. The user account token is an OAuth2 authorization grant. This is expressed as a JWT,
which can be exchanged for the PAT. It is provided alongside the user token with every find
request sent by the PDP CDA to pension providers or schemes.

74. The pension provider or scheme is required to use the user account token to request a
PAT. This is following a successful find operation where it needs to register one or more
found pensions assets with the PDP CDA.

• the token will be signed by the issuer (PDP Authorization Server)

• the client receiver does not need to validate the signature

• the token will be encrypted by the issuer (Authorization Server)

• the client receiver (pension provider or scheme) does not need to decrypt the token

• the token must not be persisted by the pension provider or scheme. They must not be stored beyond

the time period required to process the find request and a PAT

View data token

Purpose

75. The view data token encapsulates the data related to the matched pension asset. It
includes associated retirement illustrations. This is returned with the pensions view data
request.

Description

For the schema see view_data_token_payload json (issued as part of the data standards).

76. The view data token is returned by a pension provider or scheme to a dashboard in
response to a view pensions data request. It is a JWT as defined in the referenced schema.
Pension providers and schemes are required to structure the view data token to align with

the schema. Dashboards are also required to parse and process the view data token

contents to ensure alignment with the schema. The view data token contains the following
claims.

• REQUIRED sub: The assetGUID of the returned pension.

• REQUIRED iss: The view_data_host_url value.

• REQUIRED aud: https://pensionsdashboards.org.uk/.

• REQUIRED exp: Set to 24 hours from issuance (86400 seconds).

• REQUIRED iat: Set to the time of issue of the token. This is an epoch date value to the nearest second.

• REQUIRED jti: Set to a randomly generated GUID.

• REQUIRED view_data: the encapsulated view data for the returned pension

Usage

77. A view data token is returned in the view pensions data response. This is sent from a
pension provider or scheme to the requesting dashboard.

• the token will be signed by the issuer (pension provider or scheme)

• the client (dashboard) must validate the signature of the token

• the issuer and client must ensure the token structure and contents align with the published version of

the token schema
• the token and its contents must not be persisted by the dashboard beyond the user session at the

dashboard

API technical standards

Transaction monitoring

78. Transaction monitoring and correlation will be achieved in the following way:

• All interfaces will carry a unique transaction identifier GUID (X-Request-ID) for logging, audit and

monitoring purposes.
• The transaction identifier must be unique to each request, including retried requests.

• The transaction identifier is issued by the party which starts the transaction. Both parties to the

transaction must retain the same transaction identifier in their respective audit logs.
• For transactions which PDP initiates, PDP will generate the identifier; for transactions which the

pension provider, scheme or dashboard initiates, it must generate the identifier.

• For API calls the transaction ID must be transmitted via the HTTP header: X-Request-ID.

• When redirecting to the consent and authorization service, dashboard providers must include the

transaction identifier (request_id) in the URL as a query parameter. For example
https://{url}?request_id={request_id}.

Caching

79. Pension providers and schemes must not cache API responses.

Third-party standards

80. These standards are built upon a number of third-party standards:

UMA grant 2.0

• Issuing authority: Kantara Initiative

• Contact details: https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

• Version: 2.0

UMA federated authorization 2.0

• Issuing authority: Kantara Initiative

• Contact details: https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

• Version: 2.0

API definitions

Authorization

81. In general permission to access API endpoints is governed by mTLS. This is possible
because the PDP ecosystem is a closed ecosystem. Within the ecosystem participants are
registered and endpoints are secured using private PKI certificates issued on registration.

This allows connections to be established via a mutual TLS connection with the central
infrastructure. It also allows connections between dashboards providers and pension
providers and schemes using the same mechanism.

82. Additional authorization may be required for specific endpoints. This is detailed in the
documentation for specific APIs.

Encoding

83. Request and response bodies must be UTF-8 encoded.

Definitions

find-requests (find) API

The find-requests API is hosted by pension providers and schemes. The purpose of the find-
request API is to accept and act upon find requests issued by the CDA.

These requests contain the pension owner’s PII data. This data must be used by each
pension provider or scheme to determine matches against their internal records.

In addition to the PII data, the find request will also provide a user_account_token, user
account token. This user_account_token is used to retrieve a PAT (protection API token),
PAT. The PAT is required by the pension providers and schemes to register and maintain PeI
resources.

Hosted by: Pension providers or schemes.

Called by: CDA.

Used in:

• pension provider or scheme:match pensions and register PeIs

OpenAPI specification: See “find-requests v1_3.yaml” and the find_request_token_payload
(issued as part of the data standards).

Performance and SLA’s : See code of connection (CoCo2.1.1, CoCo2.1.2, CoCo2.1.4,
CoCo2.1.5)

token API

The token API is hosted by the CDA. It is used by pension providers and schemes and
dashboard providers to obtain access tokens in the form of JWTs. The access token JWTs are
used throughout the system to allow access to controlled resources.

The token endpoint is an implementation of the standard access token endpoint. This is
described at https://datatracker.ietf.org/doc/html/rfc6749#section-3.2.

Hosted by: CDA.

Called by: Pension providers or schemes or pensions dashboard providers.

Used in:

• pension provider or scheme: match pensions and register PeIs

OpenAPI specification: See “token v2_1.yaml”.

rreguri API

The rreguri API is hosted by the CDA. Pension providers and schemes use this API to register
and maintain registered PeIs relating to pensions matched as a result of find-requests. The

permitted states and transition paths are documented in the pensions identifier (PeI) status
and transition section.

Once a PeI has been registered, responsibility for maintaining the PeI belongs with the
pension providers or schemes. This responsibility remains with pension providers and
schemes until they have deleted the registered PeI.

Hosted by: CDA.

Called by: Pension providers or schemes.

Used in:

• pension provider or scheme:match pensions and register PeIs

• pension provider or scheme:update match status

• pension provider or scheme:delete registered PeI

OpenAPI specification: See “rreguri v1_3.yaml”.

Authorization: In addition to the standard use of mTLS, a valid PAT must be sent as bearer
authentication with each request.

view-data API

The view-data API is hosted by pension providers or schemes. It is called by dashboard

providers to retrieve pension and pension illustration details. These details will be
associated with a pension asset that has been registered under a PeI.

Hosted by: Pension providers or schemes.

Called by: Pensions dashboard providers.

Used in:

• pension provider or scheme:get view data request

OpenAPI specification: See “view-data v1_2yaml” and the view_data_token_payload
schema (issued as part of the data standards).

Authorization: In addition to the standard use of mTLS, a valid RPT must be sent as bearer
authentication for the GET request.

Performance and SLA’s: See code of connection (CoCo2.1.3, CoCo2.1.4, CoCo2.1.5).

introspect API

The introspect API is hosted by the CDA. It is used by pension providers and schemes to
check whether access tokens provided in requests provide sufficient permissions to allow

access to requested data. Specifically, the pension providers and schemes will check if an
RPT provided in a view-data request grants sufficient access for the view data to be
returned.

Hosted by: CDA.

Called by: Pension providers or schemes.

Used in:

• pension provider or scheme:get view data request

OpenAPI specification: See “introspect v1_1.yaml”.

Authorization: In addition to the standard use of mTLS, a valid PAT must be sent as Bearer
authentication for the GET request.

perm API

The perm (permissions) API is hosted by the CDA. It is used by pension providers and
schemes to retrieve permission tokens. These permission tokens are returned to view-data
API clients so that they can obtain the correct access token (RPT) to retrieve data that they
have requested.

Hosted by: CDA.

Called by: Pension providers or schemes.

Used in:

• pension provider or scheme:get view data request

OpenAPI specification: See “perm v1_1.yaml”.

Authorization: In addition to the standard use of mTLS, a valid PAT must be sent as bearer
authentication for the GET Request.

Sequences diagrams and API usage

Pension provider or scheme – match pensions and register PeIs

Scenario

84. This section details the interactions that occur between the ecosystem participants in
the scenario where a find request is issued by the CDA.

85. The find request must be immediately acknowledged by the pension provider or
scheme, which will then enact a search based on the match criteria provided for the citizen
user in the request and the pension asset owner details held on the pension provider or
scheme systems.

86. For each match identified, the pension provider or scheme will register an appropriate
PeI with the CDA.

Ecosystem participants

• CDA

• pension provider or scheme

APIs

• find-requests: Hosted by pension provider or scheme.

• token: Hosted by CDA.

• rreguri: Hosted by CDA.

API usage details

87. The sections below describe the detailed usage of the APIs in this scenario.

CDA issues find request

88. The CDA issues a request for the pension provider or scheme to initiate a search for
pensions matching based on criteria provided in the user token.

89. A pension provider or scheme will use the information provided in the user token to
determine if there any matches within the internal records of pension asset owners.

Call Data Provider POST find-requests Request

Name Sent as Source Logic

BaseUrl&Endpoint
Base

URL.

Provided by

the pension

provider or

scheme during

onboarding.

See find_request_path_url.

X-Request-ID Header.
Generated by

CDA.

A unique ID for the request to allow

tracing of request flows.

find_correlation_id Header.
Generated by

CDA.

A unique identifier to link find-requests

that are issued in relation to a

particular citizen user.

user_token
Request

body.

Generated by

CDA.

See user token. The user token payload

must be validated against the expected

schema.

user_account_token
Request

body.

Generated by

CDA.

See user account token. This is a JWT

token which the pension provider or

scheme does not need to interpret but

will use to obtain a PAT, see PAT. The

pension provider or scheme should not

attempt to validate the token. The user

account token will expire 60 seconds

after issue. This aligns with the SLA for

registering a PeI after a find request has

been issued.

Call Data Provider POST find_requests Response (202 Success)

Name Sent as Source Logic

Not

applicable.

Provided by the

pension provider

or scheme.

Not

applicable.

The pension provider or scheme must

immediately respond to the request with

an acknowledgement of the request.

Call Data Provider POST find_requests Response (400 Bad Request)

Name Sent as Source Logic

Not

applicable.

Provided by

the pension

provider or

scheme.

Not

applicable.

Pension provider or scheme must immediately

respond to invalid requests. This may include if

the request has invalid, or missing, parameters

or the user token is not correctly signed or its

payload does not conform to the schema. The

pension provider or scheme must immediately

respond to the request with the 400, Bad

Request, response.

Call Data Provider POST find_requests Response (400 Bad Request or 403 Forbidden or

connection refused/reject handshake)

Name Sent as Source Logic

Not

applicable.

Provided by

the pension

provider or

scheme.

Not

applicable.

For mTLS related errors where the client

certificate for the request is missing or invalid,

the find-requests and view-data APIs should

return a 403 or 400 error. If this isn't possible

due to technology constraints, a lower-level

transport layer error (for example "connection

refused", "reject handshake") should be

returned

Pension provider or scheme obtains PAT

90. The pension provider or scheme will identify any full or possible matches between the
citizen user details provided in the find request and the pension asset owner details on their

systems. Any possible or full matches identified must be registered with the CDA, see
repeated match behaviour for special behaviour in repeat match scenarios.

91. Before registering matching assets, the pension provider or scheme will need to obtain a

PAT. Per find request, a single PAT should be used to register all the pension assets for a
particular pension asset owner/citizen user. If, when a new match is identified, pension

asset owner already has a PAT associated with them then a new PAT should be requested to
register the new match and this PAT should replace the stored PAT for previous
registrations for the pension asset owner/citizen user.

92. The User Account Token provided in the find request is an OAuth2 authorization grant.
This is expressed as a JWT (JSON web token) which can be exchanged for the PAT as
described below. This is an OAuth2 access token, as per the OAuth2 standard. For the POST

token interaction the request body must be sent with a content type of “x-www-form-
urlencoded”.

Call CDA POST token Request

Name Sent as Source Logic

BaseUrl&Endpoint Base URL.

Provided to the

pension provider

or scheme in the

onboarding pack

during the

Connection

process.

See token_host_url.

X-Request-ID Header.

Generated by the

pension provider

or scheme.

A unique ID for the request to allow

tracing of request flows.

grant_type

Request

body

parameter.

Provided by the

pension provider

or scheme.

In this scenario the pension

provider or scheme will set this to

"urn:ietf:params:oauth:grant-

type:jwt-bearer".

assertion

Request

body

parameter.

Provided by the

CDA.

The user account token provided in

the find_requests call.

scope

Request

body

parameter.

Provided by the

pension provider

or scheme.

In this scenario the pension

provider or scheme will set to

"uma_protection".

Call CDA POST token Response (200 Success)

Name Sent as Source Logic

access_token
Response

body.

Provided

by the

CDA.

The owner PAT expressed as a JWT. The pension

provider or scheme does not need to interpret the

token but will use it when accessing the rreguri

API endpoints.

token_type
Response

body.

Provided

by the

CDA.

The pension provider or scheme must check that

this is “pension_dashboard_pat”. They should

throw an exception if the value is not correct.

Pension provider or scheme registers PeI(s)

93. Once the pension provider or scheme has obtained a PAT they must register any
identified matches with the CDA.

94. The pension provider or scheme will record sufficient information about a successful
registration to allow the pension provider or scheme to maintain the registered PeIs and to
service calls to retrieve the view-data associated with the associated assetGuid.

95. In order to enable this the recorded information will need to include the following:

• assetGuid: A unique identifier for a pension asset owner/ find_correlation_id. Where there are

multiple matches against a pension asset owner for find-requests with different find_correlation_ids

the pension provider or scheme must generate a unique ID for each so that they can identify which
match is associated with a particular view-data request, see pension provider or scheme – get view
data request.

• resource_id: The ID for the registered PeI resource provided in the success response returned when

the PeI resource is registered.
• PAT: The current PAT that can be user to maintain the registered PeI and introspect RPTs in relation

to view-data requests (initially this will be the PAT used to register the PeI).
• match_status: The current status of the match.

• find_correlation_id: As passed in the find request, this is required to resolve repeated match

scenarios, see repeated match behaviour.

96. It may also need to include these attributes to link to the internal data held by the
pension provider or scheme:

• pensionOwnerIdentifier (the internal ID for a pension owner): The pension provider or scheme

internal identifier for a pension asset owner.
• internalAssetIdentifier (the internal ID for a pension asset): The pension provider or scheme internal

identifier for a pension asset.

Call CDA POST rreguri Request

Name Sent as Source Logic

BaseUrl&Endpoint
Base

URL.

Provided to the pension

provider or scheme in

the onboarding pack

during the connection

process.

See rreguri_host_url.

X-Request-ID Header.

Generated by the

pension provider or

scheme.

A unique ID for the request to

facilitate tracing.

Authorization: Header. Provided by the CDA.

The access_token provided in

the Post tokens response.

Provided as "Bearer " +

access_token.

resource_scopes
Request

body.

Provided by the

pension provider or

scheme.

In this scenario the pension

provider or scheme will set the

scopes to [“value”, “owner”,

“delegate”].

name
Request

body.

Provided by the

pension provider or

scheme.

The urn for the PeI to be

registered in the form

"urn:pei:<PeI>.

description
Request

body.

Provided by the

pension provider or

scheme.

This must be the "scheme

name" that will be returned in

response to the GET pension-

details (view) response for the

PeI.

match_status
Request

body.

Determined by the

pension provider or

scheme.

The initial match status for the

registered PeI. Either "match-

yes" for a full match or

"match-possible" for a

possible match.

inbound_request_id
Request

body.
Not applicable.

In this instance the X-Request-

ID sent in the find request.

Call CDA POST rreguri Response (201 Success)

Name Sent as Source Logic

Location Header.
Provided by

the CDA.

The location of the resource. For example,

https://cdapath/registered-peis/resource_id.

resource_id
Response

body.

Provided by

the CDA.

The unique_id of the newly created registered

PeI.

Pension provider or scheme – update match status

Scenario

97. This section details the interactions between the ecosystem participants when pension
provider or scheme processes determine that the match status needs of a registered PeI
needs to be updated. This could be because:

• A possible match has been resolved to a full match either due to a manual process or a repeated

match scenario, see behaviour where there is a pre-existing current match.

Ecosystem participants

• CDA

• pension provider or schemes

APIs

• rreguri: Hosted by CDA.

Sequence diagram

API usage details

98. The section below describes the detailed usage of the APIs in this scenario.

Call CDA PATCH rreguri Request

Name Sent as Source Logic

BaseUrl&Endpoint Base URL.

Provided to the

pension provider

or scheme in the

onboarding pack

during the

connection

process.

See rreguri_host_url.

X-Request-ID Header.

Generated by

pension provider

or scheme.

A unique ID for the request to

facilitate tracing.

Authorization:  Header.

The access_token

(PAT) provided in

the Post token

response received

during the PeI

registration

process,

access_token.

"Bearer " + access_token. The

PAT token held against the pei in

relation to the pension owner

whose match status has been

clarified.

resource_id
Path

parameter.

Returned by the

CDA in the POST

rreguri response.

Not applicable.

match_status
Request

body.

Determined by the

pension provider

or scheme.

The new match status, this may

only be "match-yes".

inbound_request_id
Request

body.
As per logic.

Only required to be populated if

the PeI status change was

triggered by a repeat find

request. Where it is required to

be populated, the

inbound_request_id must be set

to the X-Request-ID sent in the

find-request which triggered the

update (likely the latest find

request). The inbound_request_id

must be formatted as a GUID,

matching the format of X-

Request-ID. If the update was

not triggered by the CDA this

should not be provided.

Call CDA Patch rreguri Response (200 Success)

Name Sent as Source Logic

resource_id Response body. Not applicable. The unique_id of the updated rreguri.

Pension provider or scheme – delete registered PeI

Scenario

99. This section details the interactions between the ecosystem participants when the

pension provider or scheme determines that registered PeI needs to be deleted. This may
be triggered in the following scenarios:

• a possible match is determined to not be a match

• a possible match was not confirmed as full (no citizen contact within 30 days or the match could not

be resolved)
• the pension provider or scheme identifies that a PeI was registered erroneously

• registered PeI relates to a crystalised or transferred pension asset

Ecosystem participants

• CDA

• pension provider or schemes

APIs

• rreguri: Hosted by CDA.

Sequence diagram

API usage details

100. The section below describes the detailed usage of the APIs in this scenario.

Call CDA DELETE rreguri Request

Name Sent as Source Logic

BaseUrl&Endpoint Base URL.

Provided to the

pension provider

or scheme in the

onboarding pack

during the

connection

process.

See rreguri_host_url.

X-Request-ID Header.

Generated by the

pension provider

or scheme.

A unique ID for the request to

facilitate tracing.

deletion_reason
Query

parameter.

Determined by the

pension provider

or scheme.

The reason that the PeI resource is

being deleted: match-no – a

match-possible has previously

been registered but found not to

be a match; match-timeout – a

possible match has previously

been registered but has since been

removed (for example, if the

pension owner did not confirm a

match within the required time

period); match-withdrawn – an

erroneous match made or possible

match has now been withdrawn;

asset-removed – a previously

registered PeI for a match made or

possible match has been removed

(for example, benefit crystalised or

transferred out).

Authorization: Header.

The access_token

provided in the

Post token

response,

access_token.

"Bearer " + access_token. For

information, an expired PAT

(access_token) is permitted to be

used to authorize the delete PeI

rreguri API call. This is applicable

when, for example, a pension user

hasn't visited the platform for a

while and the PAT has expired.

resource_id
Path

parameter.

The resource ID

return in the POST

rreguri response,

resource_id.

Not applicable.

CDA DELETE rreguri Request Response (204 Success)

Name Sent as Source Logic

Not applicable. Not applicable. Not applicable. Not applicable.

Pension provider or scheme – get view data request

Scenario

101. This section details the interactions between the ecosystem participants in the scenario
where a pension dashboard provider requests the pension details related to a particular
assetGuid from a pension provider or scheme.

Ecosystem participants

• pension dashboard providers

• pension providers or schemes

APIs

• view-data: Hosted by pension provider or scheme.

• introspect: Hosted by CDA.

• perm: Hosted by CDA.

Sequence diagram

API usage details

102. The section below describes the detailed usage of the APIs in this scenario.

Pensions dashboard provider issues a request to retrieve the view data

103. The pensions dashboard provider issues a request for the pension provider or scheme
to retrieve the pension details associated with a PeI in relation to a particular user.

Call Data Provider GET view-data (Request)

Name Sent as Source Logic

BaseUrl&Endpoint Base URL.

Provided by the

pension provider or

scheme for each

holdernameGuid.

See view_data_host_url.

X-Request-ID Header.
Generated by the

dashboard provider.

A unique ID for the request to

facilitate tracing.

Authorization: Header. Dashboard provider.
The RPT relating to the citizen

user seeking access.

asset_guid
Path

parameter.

The assetGuid of the

PeI who’s details are

required.

See assetGuid.

scope
Query

parameter
"owner".

Currently only owner is

supported. Any other value must

result in the pension provider or

scheme responding with a 400

bad request. If not provided the

pension provider or scheme will

assume “owner”.

Call Data Provider GET view-data  (200 Response)

Name Sent as Source Logic

view_data_token
Response

body.

Provided

by the

pension

provider or

scheme.

The pension provider or scheme will

construct a JWT token containing the view

data derived by the pension provider or

scheme for the pension identified by the

passed asset_guid. The schema for the

view_data_token_payload is issued as part

of the data standards.

Call Data Provider GET view-data  (401 Response)

Name
Sent

as
Source Logic

WWW-

Authenti

cate

Head

er.

Provid

ed in

the

error

respon

se.

The WWW-authenticate header see

(https://datatracker.ietf.org/doc/html/rfc7235?utm_source=lo

calhost%3A8080#section-4.1), containing the following claims:

realm, in this scenario the returned realm must always be  

"PensionDashboard"; as_uri, the path to the token endpoint;

ticket, the PMT provided as a JWT token. The dashboard does

not need to interpret this ticket. The challenge must be set to

"UMA". Example: WWW-Authenticate: UMA

realm="PensionDashboard", as_uri="example",

ticket="example

Call Data Provider GET view-data Response (400 Bad Request or 403 Forbidden or

connection refused/reject handshake)

Name Sent as Source Logic

Not

applicable

Provided by

the pension

provider or

scheme.

Not

applicable

For mTLS related errors where the client

certificate for the request is missing or invalid,

the find-requests and view-data APIs should

return a 403 or 400 error. If this isn't possible due

to technology constraints, a lower-level

transport layer error (for example "connection

refused", "reject handshake") should be returned

Pension provider or scheme introspects the RPT

104. If an RPT has been provided in the request then, prior to responding to the request, it is
the pension providers’ and schemes’ responsibility to ensure that the requesting party has
current, valid permissions to access the requested pension details.

Call CDA POST introspect (Request)

Name Sent as Source Logic

BaseUrl&Endpoint
Base

URL.

Provided by the CDA

for each shared

environment during

connection.

See introspect_host_url.

X-Request-ID Header.

Generated by the

pension provider or

scheme.

A unique ID for the request to

facilitate tracing.

Authorization: Header.

Provided by the

pension provider or

scheme.

"Bearer " + access_token. The

PAT token held against the PeI in

relation to the pension owner of

the asset.

token
Request

body.

Provided in the view-

data request

Authorization: header.

Not applicable.

Call CDA POST introspect Response (200 Success)

Name Sent as Source Logic

active
Response

body.
CDA.

Denotes if the passed token (RPT) is

active. If this is not true, the pension

provider or scheme must attempt to

obtain a PMT and return this in a 401

error response.

token_type
Response

body.
CDA.

The type of the passed token. If

provided the pension provider or

scheme must check that it is

“pension_dashboard_rpt”. If the

token type is not correct, the pension

provider or scheme must reject the

view-data request with HTTP 400

Bad Request.

exp
Response

body.
CDA.

If provided the pension provider or

scheme must check that the RPT has

not expired. If the RPT has expired,

the pension provider or scheme must

attempt to obtain a PMT and return

this in a 401 error response.

iss
Response

body.
CDA. Not applicable.

permissions
Response

body.
CDA.

The CDA will return a single set of

resource information for each

resource granted under the RPT for

the account denoted by the PAT. If

no permissions are returned, the

pension provider or scheme must

attempt to obtain a PMT and return

this in a 401 error response.

permissions.resource_id
Response

body.
CDA.

The resource_id of the registered PeI.

The pension provider or scheme must

identify the permission details for

the resource_id associated with the

asset_guid provided in the view-

data request. If a permission is not

returned for the expected

resource_id, the pension provider or

scheme must attempt to obtain a

PMT and return this in a 401 error

response.

permissions.resource_scopes
Response

body.
CDA.

The access scopes allowed under the

RPT for the resource.The pension

provider or scheme must check that

the resource_scopes for the

identified permission details

contains the scope provided in the

view-data request. If the requested

scope is not present, the pension

provider or scheme must attempt to

obtain a PMT and return this in a 401

error response.

permissions.exp
Response

body.
CDA.

If provided the pension provider or

scheme must check that the

permission has not expired. If the

permission has expired, the pension

provider or scheme must attempt to

obtain a PMT and return this in a 401

error response.

Pension provider or scheme retrieves PMT

105. Where the pension provider or scheme cannot confirm that the requester has
permission to access the view data for the passed asset_guid, it must retrieve a PMT from

the CDA to pass back to the requestor to enable the requester to generate an appropriate
RPT prior to a subsequent view data request.

106. This will be triggered:

• if no RPT is presented in the view_data request

• if the permissions returned in by the introspection results do not confirm access to the resource in the

requested scope

Call CDA POST perm (Request)

Name Sent as Source Logic

BaseUrl&Endpoint
Base

URL.

Provided by the CDA

for each shared

environment during

connection.

See perm_host_url.

X-Request-ID Header.

Generated by the

pension provider or

scheme.

A unique ID for the request to

facilitate tracing.

Authorization: Header.

Provided by the

pension provider or

scheme.

"Bearer " + access_token. The

PAT token held against the PeI

in relation to the pension owner

of the asset.

resource_id
Request

body.

Provided by the

pension provider or

scheme.

The PAT resource_id held

against the PeI provided by the

CDA when the PeI was

registered.

resource_scopes
Request

body.

Provided by the

pension provider or

scheme.

Set to [“value”, “owner”].

Call CDA POST perm Response (201 Success)

Name Sent as Source Logic

ticket
Response

body.
CDA.

A JWT representing a PMT. The pension provider or scheme will not need to

examine the contents of the JWT but will simply return it in the view_data 401

response.

Repeated match behaviour

107. It is the pension provider or scheme’s responsibility to define their criteria in terms of
what defines a full or possible match between the citizen user data, provided in the user

token in a find request, and pension asset owner details held on its systems. However, to
ensure consistent behaviour within the ecosystem, it is necessary for the pension providers

and schemes to behave in a consistent way when repeat matches are made against a single
pension asset owner as a result of multiple find requests.

108. Repeat matches against a single pension asset owner can occur in 2 scenarios:

• multiple matches for find-requests received in relation to the same actual citizen user. This can be

identified by the fact that identical find_correlation_id header information has been provided in the

find requests
• multiple matches for find-requests received in relation to different citizens. This can be identified by

the fact that different find_correlation_id header information has been provided in the find requests

Multiple CDA accounts for the same citizen user

109. The possibility of the same citizen user creating 2 CDA accounts cannot be ruled out. In

this situation the ecosystem will treat them as 2 different citizen users (with different
find_correlation_ids).

Repeat matches for the same citizen user

110. Over time, multiple find requests may be issued by the CDA in relation to the same
citizen user.

111. When a find-request is received in relation to a citizen user, there may be previous
matches already recorded for the citizen user against a particular pension asset owner.

112. There may be a single current active match which may be either a full match, “match-
yes”, or a possible match, “match-possible”.

113. Additionally, there may be any number of historical matches where a PeI registration
has been deleted by the pension provider or scheme, namely:

• a historic possible match that has been resolved as not a match (deleted with reason match -no)

• historic possible matches (deleted with reason match-timeout)

• historic matches that have been withdrawn having been erroneously registered (deleted with reason

match-withdrawn)
• historic matches that have been removed as the asset has been, for example, transferred, crystalised,

begun drawdown (deleted with reason asset-removed)

Behaviour where there is a pre-existing current match

114. Regardless of any historic matches, where there is current registered PeI for a citizen
user/pension asset owner match, the pension provider or scheme must behave as described
in the following table.

Scenario Existing full match Existing possible match

Full match

resulting from a

subsequent find-

request.

The pension provider or

scheme leaves the

existing registered PeI

and does not register a

new PeI resource.

The pension provider or scheme updates

the existing registered PeI to indicate a

full match.

Possible match

resulting from a

subsequent find-

request.

The pension provider or

scheme leaves the

existing registered PeI

and does not register a

new PeI resource.

The pension provider or scheme leaves

the existing registered PeI and does not

register a new PeI resource. The expiry

date (to resolve the match status) of the

original possible match should not be

extended.

Subsequent find-

request does not

result in a match.

The pension provider or

scheme leaves the

existing registered PeI.

The pension provider or scheme leaves

the existing registered PeI.

Behaviour where there is no pre-existing current match

115. Where there is no current match for the pension asset owner, but there are historic
matches, the pension provider or scheme must behave as described in the following table.

Scenario

Historic possible match

resolved to no match

(regardless of other historic

matches)

Any other combination of

historical matches

Full match resulting

from a subsequent

find-request.

The pension provider or

scheme will create a new

registered PeI. resource with

match status “match-yes”.

The pension provider or scheme

will create a new registered PeI

resource with match status

“match-yes”.

Possible match

resulting from a

subsequent find-

request.

The pension provider or

scheme will not create a new

registered PeI.

The pension provider or scheme

will create a new registered PeI

resource with match status

“match-possible”.

Subsequent find-

request does not

result in a match.

The pension provider or

scheme will not create a new

registered PeI.

The pension provider or scheme

will not create a new registered

PeI.

Matches between multiple citizen users and a single pension asset owner

116. It is possible for pension provider or scheme systems to identify matches, to a single
pension asset owner, as a result of find requests related to multiple citizen users.

117. Where this scenario arises, the pension provider must behave as described in the
following table.

Scenario
Current possible match for citizen

user 1

Current full match for citizen user

1

Possible match

resulting from

a subsequent

find-request

for citizen user

2.

The pension provider or scheme

will leave the existing PeI

registration linked to citizen user 1

and generate a new assetGuid and

creates a new registered PeI

resource using the new assetGuid

with match status “match-

possible” linking this to citizen user

2.

The pension provider or scheme

will leave the existing PeI

registration linked to citizen user 1

and generate a new assetGuid and

creates a new registered PeI

resource using the new assetGuid

with match status “match-

possible” linking this to citizen user

2. In this scenario, it is the pension

provider or scheme’s responsibility

to determine whether to return

view-data with a “CONT” status

(data item 2.004 set to true) and

limited data for the full matches

until the conflict has been

resolved.

Full match

resulting from

a subsequent

find-request

for citizen user

2.

The pension provider or scheme

leaves the existing PeI registration

linked to citizen user 1 and

generates a new assetGuid and

creates a new registered PeI

resource using the new assetGuid

with match status “match-yes”

linking this to citizen user 2. In this

scenario, it is the pension provider

or scheme’s responsibility to

determine whether to return view-

data with a “CONT” status (data

item 2.004 set to true) and limited

data for the full match until the

conflict has been resolved.

The pension provider or scheme

leaves the existing PeI registration

linked to citizen user 1 and

generates a new assetGuid and

creates a new registered PeI

resource using the new assetGuid

with match status “match-yes”

linking this to citizen user 2. In this

scenario, it is the pension provider

or scheme’s responsibility to

determine whether to return view-

data with a “CONT” status (data

item 2.004 set to true) and limited

data for the full matches until the

conflict has been resolved.

Pensions Identifier (PeI) status and transition

118. After matching, PeIs are registered with a match_status of either match-possible or
match-yes.

119. Subsequently the match status may need to be updated, for example from match-
possible to match-yes, or the match may need to be removed.

120. When matches are removed, the deletion reason denotes the reason for removal.

121. The permitted states and transition paths are documented below:

